75 research outputs found

    Integrasi Pengembangan Techno Park dan Mitigasi Bencana Daerah Volcano Hosted Geothermal Cangar, Arjuno-Welirang Berbasis Metode Seismik

    Get PDF
    Telah dilakukan integrasi konsep pengembangan Techno Park dan Mitigasi Bencana pada kawasan Volcano Hosted Geothermal dengan berdasar pada metode seismik. Pada tahap awal dilakukan survey mikroseismik dengan analisis pergerakan partikel. Tujuannya untuk mengetahui sebaran episenter dan hiposenter gempa bumi mikro yang berubah secara spatio- temporal dan sebaran nilai Peak Ground Acceleration (PGA) yang dihitung menggunakan metode Kanai. Akuisisi data dilakukan di dua lokasi (Tretes dan Cangar) tempat pengembangan Techno Park dan observatorium Gunungapi dan Geothermal menggunakan seismograf TDL-303S dan juga dikembangkan homemade seismometer berbasis MEMS. Hasil penelitian didapatkan rentang frekuensi gempa bumi mikro berkisar 12-24 Hz. Terdiri atas 34 event tersebar di sekitar Daerah Cangar dengan rentang kedalaman 4-262 meter, serta 6 event di sekitar Kawah Welirang dengan rentang kedalaman 985-2152 meter. Sumber event di sekitar kawah diduga sebagai akibat aktivitas vulkanik Kawah Welirang. Nilai Sebaran nilai PGA di Daerah Cangar berkisar 11,23 gal hingga 21,8 gal. Sedangkan, di Daerah Tretes berkisar 5,93 gal hingga 18,87 gal. Rentang nilai tersebut menunjukkan tingkat risiko akibat gempa tektonik pada daerah penelitian termasuk kategori aman, sehingga layak untuk pengembangan daerah monitoring erupsi gunungapi Arjuno WelirangDOI: http://dx.doi.org/10.17977/um024v3i12018p025

    Interpretation of Bouguer Anomaly to Determine Fault and Subsurface Structure at Blawan-ijen Geothermal Area

    Full text link
    Gravity survey has been acquired by Gravimeter Lacoste & Romberg G-1035 at Blawan-Ijen geothermal area. It was a focusing study from previous research. The residual Bouguer anomaly data was obtain after applying gravity data reduction, reduction to horizontal plane, and upward continuation. Result of Bouguer anomaly interpretation shows occurrence of new faults and their relative movement. Blawan fault (F1), F2, F3, and F6 are normal fault. Blawan fault is main fault controlling hot springs at Blawan-Ijen geothermal area. F4 and F5 are oblique fault and forming a graben at Banyupahit River. F7 is reverse fault. Subsurface model shows that Blawan-Ijen geothermal area was dominated by the Ijen caldera forming ignimbrite (ρ1=2.670 g/cm3), embedded shale and sand (ρ2=2.644 g/cm3) as Blawan lake sediments, magma intrusion (ρ3=2.814 g/cm3 & ρ7=2.821 g/cm3), andesite rock (ρ4=2.448 g/cm3) as geothermal reservoir, pyroclastic air fall deposits (ρ5=2.613 g/cm3) from Mt. Blau, and lava flow (ρ6=2.890 g/cm3)

    Hypocenter Determination and Clustering of Volcano-tectonic Earthquakes in Gede Volcano 2015

    Full text link
    Gede volcano is an active volcano in West Java, Indonesia. Research about determination the volcano-tectonic earthquake source positions has given results using volcano-tectonic earthquakes data from January until November 2015. Volcano-tectonic earthquakes contained deep (VT-A) have frequency (maximum amplitude) range 5 – 15 Hz. Furthermore, they contain shallow earthquake, VT-B have range 3-5 Hz and LF have range 1-3 Hz. Geiger's Adaptive Damping (GAD) methods used for determining the hypocenter of these volcano-tectonic (VT) events. Hypocenter distribution divided into 4 clusters. Cluster I located in the crater of Gede volcano dominated by VT-B earthquakes their depth range 2 km below MSL to 2 km above MSL including the VT-B swarm. The seismic sources in cluster I indicated dominant due to the volcanic fluid or gas filled in conduit pipes. Cluster II located at the west of Gede volcano caused by Gede-Pangrango fault-line dominated by VT-A earthquakes with depths range 1.5 km below MSL to 700 m above MSL. Cluster III located in the North of Gede volcano dominated by VT-A events there caused by graben fault area with those depths range 7.5 – 1.65 km below MSL. Cluster IV located in South West of Gede volcano contained VT-A earthquakes with depth range at 10 km below MSL and VT-B earthquakes this depth 2 km below MSL. Due to magma intrusion filled into fractures of the fault in the West of Gede volcano this shallow magma filling-fractures and degassing in subsurface assumed dominates the volcano-tectonic events from January to November 2015 due to faults extends from North to South occured in the West of Gede volcano

    Application of Single MEMS-accelerometer to Measure 3-axis Vibrations and 2-axis Tilt-Angle Simultaneously

    Get PDF
    This paper discusses a technique of developing an integrated sensor system, to measure the mechanical vibrations in 3-axis and the tilt-angle in 2-axis simultaneously, using only single MEMS-accelerometer. Type of MEMS-accelerometer that used in this experiment is MMA7361L, which is an analog-type acceleration sensor in the form of MEMS, with a maximum sensitivity of 800 mV/g. The MMA7361L has three outputs of voltage (Vx, Vy, Vz) in response to the acceleration value "g" of each working-axis corresponding vibrating (gx, gy, gz). By using certain techniques in the design of signal conditioning circuits, then the MMA7361L can be used to detect parameters of the vibration in 3-axis and the tilt-angle in 2-axis at the same time, simultaneously. To accommodate five output signal of the sensor system, used a data acquisition system that was built based on PIC16F876 microcontroller, which are already contained five internal ADC with 10 bits resolution. Thus, the resulting integrated sensor system becomes very simple, minimal components, and inexpensive. The experimental results show that the developed integrated sensor system has capability to measure the 3-axis vibrations and the 2-axis tilt-angle, with fairly good accuracy

    Implementation of MEMS Accelerometer for Velocity-based Seismic Sensor

    Get PDF
    Micro Electro Mechanical System (MEMS) accelerometer is commonly used as acceleration-based vibration sensor. The MEMS accelerometer is small device, simple in the implementation design, and relatively inexpensive. But in some fields of application, due to low frequency operation and also small magnitude of the measured signal, for example in seismology, velocity-based vibration sensor is usually more desirable than acceleration-based sensor. In this research, a velocity-based vibration sensor has been developed using MEMS Accelerometer device e.g. MMA7361L. The acceleration-based vibration signal from the MMA7361L is converted into a velocity-based vibration signal by using an integrator circuit module. This module is assembled by using a band-pass filter and an integral-amplifier. The laboratory test shows that the developed sensor system could detect both low and high-frequency vibration signals in velocity-based with good result. The sensor system has a frequency range of 0.02Hz to 148Hz. It is wider frequency than the geophone (seismic sensor), thus the velocity-based MEMS sensor system has capability for geophone replacement

    Pengembangan Array sensor Suhu dan Sistem Akusisi Data Berbasis Mikrokontroler untuk Pengukuran Suhu Bawah Permukaan

    Get PDF
    Dalam penelitian ini dikembangkan sebuah sistem akusisi data untuk survei panas bumi. Untuk menghasilkan sistem instrumentasi yang mampu mengukur dan memonitor distribusi suhu bawah permukaan diperlukan sistem akusisi data yang murah dan efesien. Sistem dibangun berbasis jaringan sistem terdistribusi dengan topologi field-bus, menggunakan arsitektur single-master multi-slave. Master merupakan unit pengendali, dibangun berbasiskan sebuah PC yang dilengkapi dengan antarmuka RS-485. Slave merupakan unit sensing, tiap-tiap unit slave dibangun dengan mengintegrasikan sistem array sensor LM35 dengan sistem akuisisi data berbasis mikrokontroler menggunakan AVR ATmega8. Pengolahan data dari hasil pengukuran suhu ini menggunakan satu set komputer dengan perangkat lunak microsoft excel 2010 untuk menghasilkan grafik pada titik pengukuran. Hasil implementasi dari monitoring suhu ini akan mengambarkan distribusi suhu bawah permukaan tanah.A data acquisition system for geothermal survey was developed in this research. Cheap and efficient data acquisition system was required to produce the instrumentation system which was capable to measure and monitor the distribution of subsurface temperature. The system consists of field-bus topology, using single-master multi-slave architecture. Master is a control unit built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave is built by integrating array sensor LM35 within AVR ATmega8a microcontroller-based data acquisition system. Measurement techniques included sounding and mapping system by placing four slaves planted in the depth of 2.5 m. Processing of data obtained from temperature measurements was performed using Microsoft Excel 2010 to produce graphics at point of measurement. The results of temperature monitoring will described the distribution of subsurface temperature

    Pengembangan sensor seismik berbasis MEMS accelerometer

    Get PDF
    Sensor seismik merupakan komponen utama dalam bidang seismologi. Salah satu sensor seismik yang sering digunakan geofon, namun geofon memiliki kekurangan dalam mendeteksi getaran frekuensi rendah di bawah 10Hz. Dengan adanya kekurangan tersebut menjadi salah satu peluang bagi sensor MEMS yang memiliki rentang frekuensi lebih lebar dibandingkan dengan geofon.Pada penelitian ini sensor MEMS terkonfigurasi dengan pengkondisi sinyal yang telah dilengkapi dengan rangkaian integrator. Fungsi dari rangkaian integrator ini untuk mengubah MEMS Percepatan menjadi MEMS Kecepatan. Sehingga MEMS mampu mendeteksi kecepatan gerakan tanah menyerupai geofon. Hasil respon sinyal MEMS menunjukkan bahwa MEMS Kecepatan mampu mendeteksi getaran frekuensi 0.01Hz hingga 100Hz. Berdasarkan hasil respon frekuensi menunjukkan bahwa MEMS mampu digunakan sebagai sensor seismik

    Analisis Komponen Volatil Dan Laju Alir Lava Pada Erupsi Gunung Semeru, Jawa Timur

    Full text link
    Gunung Semeru merupakan salah satu gunung aktif di Indonesia dan telah mengalami Perubahan tipe erupsi sejak tahun 1967. Sehingga penting untuk dilakukan penelitian mengenai analisis erupsi berdasarkan komponen volatil dan penentuan laju alir lava Gunung Semeru dengan tujuan untuk memperkirakan mekanisme sifat erupsi pada masa sekarang dan untuk mengetahui potensi daerah berbahaya aliran lava G. Semeru bila terjadi letusan eksplosif.Analisis erupsi didasarkan pada parameter fisika terhadap analisis geokimia batuan sedangkan laju alir lava didasarkan pada kemiringan topografi yang dilaluinya. Hasil penelitian menunjukkan berkurangnya tekanan akan mengakibatkan lepasnya gas dari magma dengan cepat, Hal ini memicu terjadinya sifat hembusan. Daerah yang memiliki laju alir lava G. Semeru paling cepat adalah Desa Oro oro Ombo, Kecamatan Pronojiwo, Kabupaten Lumajang

    Identifikasi Litologi Daerah Panasbumi Tiris Probolinggo Berdasarkan Metode Magnetik

    Full text link
    Telah dilakukan penelitian di daerah panas bumi Tiris, Kabupaten Probolinggo dengan menggunakan metode magnetik. Penelitian ini bertujuan menentukan nilai anomali magnetik dan menentukan litologi batuan di daerah panasbumi Tiris. Pengambilan data dilakukan selama 3 hari dengan luas area 1 km x 1 km dan spasi 50 m menggunakan alat Proton Precision Magnetometer (PPM). Pengolahan data dilakukan dengan koreksi diurnal, koreksi IGRF, kontinuasi ke atas, dan reduksi ke kutub. Interpretasi data dilakukan secara kuantitatif dan kualitatif. Interpretasi kualitatif dilakukan dengan menganalisa anomali residual yang telah direduksi ke kutub sedangkan interpretasi kuantitatif dilakukan dengan menganalisa pola anomali residual yang telah dimodelkan dengan menggunakan software Mag2DC. Hasil interpretasi kuantitatif, nilai anomali medan magnetik reduksi ke kutub berada pada -900 nT sampai 800 nT sedangkan hasil interpretasi kualitatif pemodelan AA', BB' dan CC' menunjukkan adanya batuan shale, breksi vulkanik, lava dan basalt

    Analisa Penyebaran Litologi Sandstone Dengan Menggunakan Inversi Impedansi Elastik Pada Lapangan Kalimaya Formasi Talang Akar Cekungan Jawa Barat Utara

    Full text link
    Telah dilakukan penelitian mengenai inversi Impedansi Elastik untuk mengetahui penyebaran litologi batu pasir (sandstone) di lapangan KALIMAYA Formasi Talang Akar Cekungan Jawa Barat Utara pada lapisan TAF 3.1 – BTM TAF 3.3. Sudut 30o merupakan sudut yang paling sensitif dalam membedakan litologi batu pasir dan shale dalam inversi yang dilakukan. Hasil dari inversi AVO menujukkan bahwa lapisan TAF 3.1 – BTM TAF 3.3 masuk ke dalam AVO kelas I yang menunjukkan reservoir high impedance gas sand. AVO kelas ini seringkali berkorelasi dengan reservoir yang tight dengan tingkat sementasi tinggi. Hasil analisa pemetaan Impedansi Elastik 30o memperlihatkan daerah penyebaran batupasir kearah barat daya – timur laut dengan range nilai impedansi 24.000-29.000 ((m/s)2*(gr/cc))
    • …
    corecore